Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37189684

RESUMO

Circulating biomarkers reflecting cardiac inflammation are needed to improve the diagnostics and guide the treatment of heart failure patients. The cardiac production and shedding of the transmembrane proteoglycan syndecan-4 is upregulated by innate immunity signaling pathways. Here, we investigated the potential of syndecan-4 as a blood biomarker of cardiac inflammation. Serum syndecan-4 was measured in patients with (i) non-ischemic, non-valvular dilated cardiomyopathy (DCM), with (n = 71) or without (n = 318) chronic inflammation; (ii) acute myocarditis (n = 15), acute pericarditis (n = 3) or acute perimyocarditis (23) and (iii) acute myocardial infarction (MI) at day 0, 3 and 30 (n = 119). Syndecan-4 was investigated in cultured cardiac myocytes and fibroblasts (n = 6-12) treated with the pro-inflammatory cytokines interleukin (IL)-1ß and its inhibitor IL-1 receptor antagonist (IL-1Ra), or tumor necrosis factor (TNF)α and its specific inhibitor infliximab, an antibody used in treatment of autoimmune diseases. The levels of serum syndecan-4 were comparable in all subgroups of patients with chronic or acute cardiomyopathy, independent of inflammation. Post-MI, syndecan-4 levels were increased at day 3 and 30 vs. day 0. IL-1Ra attenuated IL-1ß-induced syndecan-4 production and shedding in vitro, while infliximab had no effect. In conclusion, syndecan-4 shedding from cardiac myocytes and fibroblasts was attenuated by immunomodulatory therapy. Although its circulating levels were increased post-MI, syndecan-4 did not reflect cardiac inflammatory status in patients with heart disease.

2.
Mol Biol Rep ; 49(12): 11795-11809, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36205855

RESUMO

BACKGROUND: Cardiomyocyte hypertrophy is a hallmark of cardiac dysfunction in patients with aortic stenosis (AS), and can be triggered by left ventricular (LV) pressure overload in mice by aortic banding (AB). Syndecan-4 is a transmembrane heparan sulphate proteoglycan which is found increased in the myocardium of AS patients and AB mice. The role of syndecan-4 in cardiomyocyte hypertrophy is not well understood. PURPOSE OF THE STUDY: We developed mice with cardiomyocyte-specific overexpression of syndecan-4 (Sdc4-Tg) and subjected these to AB to examine the role of syndecan-4 in hypertrophy and activation of the pro-hypertrophic calcineurin-NFAT signalling pathway. METHODS AND RESULTS: Sdc4-Tg mice showed exacerbated cardiac remodelling upon AB compared to wild type (WT). At 2-6 weeks post-AB, Sdc4-Tg and WT mice showed similar hypertrophic growth, while at 20 weeks post-AB, exacerbated hypertrophy and dysfunction were evident in Sdc4-Tg mice. After cross-breeding of Sdc4-Tg mice with NFAT-luciferase reporter mice, we found increased NFAT activation in Sdc4-Tg hearts after AB. Immunoprecipitation showed that calcineurin bound to syndecan-4 in Sdc4-Tg hearts. Isolated cardiomyocytes from Sdc4-Tg mice showed alterations in Ca2+ fluxes, suggesting that syndecan-4 regulated Ca2+ levels, and thereby, activating the syndecan-4-calcineurin complex resulting in NFAT activation and hypertrophic growth. Similarly, primary cardiomyocyte cultures from neonatal rats showed increased calcineurin-NFAT-dependent hypertrophic growth upon viral Sdc4 overexpression. CONCLUSION: Our study of mice with cardiomyocyte-specific overexpression of Sdc4 have revealed that syndecan-4 is important for activation of the Ca2+-dependent calcineurin-NFAT signalling pathway, hypertrophic remodelling and dysfunction in cardiomyocytes in response to pressure overload.


Assuntos
Calcineurina , Miócitos Cardíacos , Sindecana-4 , Animais , Camundongos , Ratos , Calcineurina/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Sindecana-4/genética , Sindecana-4/metabolismo
3.
Sci Rep ; 11(1): 19757, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611183

RESUMO

Fibrosis accompanies most heart diseases and is associated with adverse patient outcomes. Transforming growth factor (TGF)ß drives extracellular matrix remodelling and fibrosis in the failing heart. Some members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs-like) family of secreted glycoproteins bind to matrix microfibrils, and although their function in the heart remains largely unknown, they are suggested to regulate TGFß activity. The aims of this study were to determine ADAMTSL2 levels in failing hearts, and to elucidate the role of ADAMTSL2 in fibrosis using cultured human cardiac fibroblasts (CFBs). Cardiac ADAMTSL2 mRNA was robustly increased in human and experimental heart failure, and mainly expressed by fibroblasts. Over-expression and treatment with extracellular ADAMTSL2 in human CFBs led to reduced TGFß production and signalling. Increased ADAMTSL2 attenuated myofibroblast differentiation, with reduced expression of the signature molecules α-smooth muscle actin and osteopontin. Finally, ADAMTSL2 mitigated the pro-fibrotic CFB phenotypes, proliferation, migration and contractility. In conclusion, the extracellular matrix-localized glycoprotein ADAMTSL2 was upregulated in fibrotic and failing hearts of patients and mice. We identified ADAMTSL2 as a negative regulator of TGFß in human cardiac fibroblasts, inhibiting myofibroblast differentiation and pro-fibrotic properties.


Assuntos
Proteínas ADAMTS/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Transdução de Sinais , Proteínas ADAMTS/genética , Animais , Biomarcadores , Diferenciação Celular/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Ratos , Fator de Crescimento Transformador beta/metabolismo
4.
J Am Heart Assoc ; 9(3): e013518, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32000579

RESUMO

Background Pressure overload of the heart occurs in patients with hypertension or valvular stenosis and induces cardiac fibrosis because of excessive production of extracellular matrix by activated cardiac fibroblasts. This initially provides essential mechanical support to the heart, but eventually compromises function. Osteopontin is associated with fibrosis; however, the underlying signaling mechanisms are not well understood. Herein, we examine the effect of thrombin-cleaved osteopontin on fibrosis in the heart and explore the role of syndecan-4 in regulating cleavage of osteopontin. Methods and Results Osteopontin was upregulated and cleaved by thrombin in the pressure-overloaded heart of mice subjected to aortic banding. Cleaved osteopontin was higher in plasma from patients with aortic stenosis receiving crystalloid compared with blood cardioplegia, likely because of less heparin-induced inhibition of thrombin. Cleaved osteopontin and the specific osteopontin peptide sequence RGDSLAYGLR that is exposed after thrombin cleavage both induced collagen production in cardiac fibroblasts. Like osteopontin, the heparan sulfate proteoglycan syndecan-4 was upregulated after aortic banding. Consistent with a heparan sulfate binding domain in the osteopontin cleavage site, syndecan-4 was found to bind to osteopontin in left ventricles and cardiac fibroblasts and protected osteopontin from cleavage by thrombin. Shedding of the extracellular part of syndecan-4 was more prominent at later remodeling phases, at which time levels of cleaved osteopontin were increased. Conclusions Thrombin-cleaved osteopontin induces collagen production by cardiac fibroblasts. Syndecan-4 protects osteopontin from cleavage by thrombin, but this protection is lost when syndecan-4 is shed in later phases of remodeling, contributing to progression of cardiac fibrosis.


Assuntos
Cardiomiopatias/enzimologia , Colágeno Tipo I/metabolismo , Fibroblastos/enzimologia , Miocárdio/enzimologia , Osteopontina/metabolismo , Sindecana-4/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Estenose da Valva Aórtica/sangue , Estenose da Valva Aórtica/complicações , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Linhagem Celular Tumoral , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Osteopontina/sangue , Ligação Proteica , Sindecana-4/genética , Trombina/metabolismo
5.
Sci Rep ; 9(1): 9206, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235849

RESUMO

Left ventricular (LV) dilatation is a key step in transition to heart failure (HF) in response to pressure overload. Cardiac extracellular matrix (ECM) contains fibrillar collagens and proteoglycans, important for maintaining tissue integrity. Alterations in collagen production and cross-linking are associated with cardiac LV dilatation and HF. Lumican (LUM) is a collagen binding proteoglycan with increased expression in hearts of patients and mice with HF, however, its role in cardiac function remains poorly understood. To examine the role of LUM in pressure overload induced cardiac remodeling, we subjected LUM knock-out (LUMKO) mice to aortic banding (AB) and treated cultured cardiac fibroblasts (CFB) with LUM. LUMKO mice exhibited increased mortality 1-14 days post-AB. Echocardiography revealed increased LV dilatation, altered hypertrophic remodeling and exacerbated contractile dysfunction in surviving LUMKO 1-10w post-AB. LUMKO hearts showed reduced collagen expression and cross-linking post-AB. Transcriptional profiling of LUMKO hearts by RNA sequencing revealed 714 differentially expressed transcripts, with enrichment of cardiotoxicity, ECM and inflammatory pathways. CFB treated with LUM showed increased mRNAs for markers of myofibroblast differentiation, proliferation and expression of ECM molecules important for fibrosis, including collagens and collagen cross-linking enzyme lysyl oxidase. In conclusion, we report the novel finding that lack of LUM attenuates collagen cross-linking in the pressure-overloaded heart, leading to increased mortality, dilatation and contractile dysfunction in mice.


Assuntos
Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Lumicana/fisiologia , Miofibroblastos/metabolismo , Animais , Colágeno/metabolismo , Dilatação , Matriz Extracelular/metabolismo , Feminino , Células HEK293 , Ventrículos do Coração/patologia , Humanos , Camundongos , Miofibroblastos/patologia
6.
PLoS One ; 13(7): e0201422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30052659

RESUMO

Pressure overload of the heart leads to cardiac remodeling that may progress into heart failure, a common, morbid and mortal condition. Increased mechanistic insight into remodeling is instrumental for development of novel heart failure treatment. Cardiac remodeling comprises cardiomyocyte hypertrophic growth, extracellular matrix alterations including fibrosis, and inflammation. Fibromodulin is a small leucine-rich proteoglycan that regulates collagen fibrillogenesis. Fibromodulin is expressed in the cardiac extracellular matrix, however its role in the heart remains largely unknown. We investigated fibromodulin levels in myocardial biopsies from heart failure patients and mice, subjected fibromodulin knock-out (FMOD-KO) mice to pressure overload by aortic banding, and overexpressed fibromodulin in cultured cardiomyocytes and cardiac fibroblasts using adenovirus. Fibromodulin was 3-10-fold upregulated in hearts of heart failure patients and mice. Both cardiomyocytes and cardiac fibroblasts expressed fibromodulin, and its expression was increased by pro-inflammatory stimuli. Without stress, FMOD-KO mice showed no cardiac phenotype. Upon aortic banding, left ventricles of FMOD-KO mice developed mildly exacerbated hypertrophic remodeling compared to wild-type mice, with increased cardiomyocyte size and altered infiltration of leukocytes. There were no differences in mortality, left ventricle dilatation, dysfunction or expression of heart failure markers. Although collagen amount and cross-linking were comparable in FMOD-KO and wild-type, overexpression of fibromodulin in cardiac fibroblasts in vitro decreased their migratory capacity and expression of fibrosis-associated molecules, i.e. the collagen-cross linking enzyme lysyl oxidase, transglutaminase 2 and periostin. In conclusion, despite a robust fibromodulin upregulation in clinical and experimental heart failure, FMOD-KO mice showed a relatively mild hypertrophic phenotype. In cultured cardiac fibroblasts, fibromodulin has anti-fibrotic effects.


Assuntos
Cardiomegalia/metabolismo , Matriz Extracelular/metabolismo , Fibromodulina/biossíntese , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Animais , Biomarcadores , Cardiomegalia/genética , Cardiomegalia/patologia , Modelos Animais de Doenças , Matriz Extracelular/genética , Matriz Extracelular/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibromodulina/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
7.
PLoS One ; 11(10): e0165079, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27768722

RESUMO

Pressure overload is a frequent cause of heart failure. Heart failure affects millions of patients worldwide and is a major cause of morbidity and mortality. Cell surface proteoglycans are emerging as molecular players in cardiac remodeling, and increased knowledge about their regulation and function is needed for improved understanding of cardiac pathogenesis. Here we investigated glypicans (GPC1-6), a family of evolutionary conserved heparan sulfate proteoglycans anchored to the extracellular leaflet of the cell membrane, in experimental and clinical heart failure, and explored the function of glypican-6 in cardiac cells in vitro. In mice subjected to pressure overload by aortic banding (AB), we observed elevated glypican-6 levels during hypertrophic remodeling and dilated, end-stage heart failure. Consistently, glypican-6 mRNA was elevated in left ventricular myocardium from explanted hearts of patients with end-stage, dilated heart failure with reduced ejection fraction. Glypican-6 levels correlated negatively with left ventricular ejection fraction in patients, and positively with lung weight after AB in mice. Glypican-6 mRNA was expressed in both cardiac fibroblasts and cardiomyocytes, and the corresponding protein displayed different sizes in the two cell types due to tissue-specific glycanation. Importantly, adenoviral overexpression of glypican-6 in cultured cardiomyocytes increased protein synthesis and induced mRNA levels of the pro-hypertrophic signature gene ACTA1 and the hypertrophy and heart failure signature genes encoding natriuretic peptides, NPPA and NPPB. Overexpression of GPC6 induced ERK1/2 phosphorylation, and co-treatment with the ERK inhibitor U0126 attenuated the GPC6-induced increase in NPPA, NPPB and protein synthesis. In conclusion, our data suggests that glypican-6 plays a role in clinical and experimental heart failure progression by regulating cardiomyocyte growth through ERK signaling.


Assuntos
Glipicanas/metabolismo , Insuficiência Cardíaca/metabolismo , Sistema de Sinalização das MAP Quinases , Miócitos Cardíacos/metabolismo , Regulação para Cima , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Ratos , Ratos Wistar
8.
J Mol Cell Cardiol ; 88: 133-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26449522

RESUMO

Inflammation is central to heart failure progression. Innate immune signaling increases expression of the transmembrane proteoglycan syndecan-4 in cardiac myocytes and fibroblasts, followed by shedding of its ectodomain. Circulating shed syndecan-4 is increased in heart failure patients, however the pathophysiological and molecular consequences associated with syndecan-4 shedding remain poorly understood. Here we used lipopolysaccharide (LPS) challenge to investigate the effects of syndecan-4 shedding in the heart. Wild-type mice (10mg/kg, 9h) and cultured neonatal rat cardiomyocytes and fibroblasts were subjected to LPS challenge. LPS increased cardiac syndecan-4 mRNA without altering full-length protein. Elevated levels of shedding fragments in the myocardium and blood from the heart confirmed syndecan-4 shedding in vivo. A parallel upregulation of ADAMTS1, ADAMTS4 and MMP9 mRNA suggested these shedding enzymes to be involved. Echocardiography revealed reduced ejection fraction, diastolic tissue velocity and prolonged QRS duration in mice unable to shed syndecan-4 (syndecan-4 KO) after LPS challenge. In line with syndecan-4 shedding promoting immune cell recruitment, expression of immune cell markers (CD8, CD11a, F4/80) and adhesion receptors (Icam1, Vcam1) were attenuated in syndecan-4 KO hearts after LPS. Cardiomyocytes and fibroblasts exposed to shed heparan sulfate-substituted syndecan-4 ectodomains showed increased Icam1, Vcam1, TNFα and IL-1ß expression and NF-κB-activation, suggesting direct regulation of immune cell recruitment pathways. In cardiac fibroblasts, shed ectodomains regulated expression of extracellular matrix constituents associated with collagen synthesis, cross-linking and turnover. Higher syndecan-4 levels in the coronary sinus vs. the radial artery of open heart surgery patients suggested that syndecan-4 is shed from the human heart. Our data demonstrate that shedding of syndecan-4 ectodomains is part of the cardiac innate immune response, promoting immune cell recruitment, extracellular matrix remodeling and mitigating cardiac dysfunction in response to LPS.


Assuntos
Insuficiência Cardíaca/imunologia , Miócitos Cardíacos/imunologia , Sepse/imunologia , Sindecana-4/imunologia , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Proteína ADAMTS1 , Proteína ADAMTS4 , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/patologia , Regulação da Expressão Gênica , Células HEK293 , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Injeções Intraperitoneais , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Lipopolissacarídeos , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Pró-Colágeno N-Endopeptidase/genética , Pró-Colágeno N-Endopeptidase/imunologia , Ratos , Ratos Wistar , Sepse/induzido quimicamente , Sepse/patologia , Sepse/prevenção & controle , Transdução de Sinais , Volume Sistólico , Sindecana-4/genética , Sindecana-4/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
9.
Cardiovasc Res ; 106(1): 32-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25694587

RESUMO

AIMS: In pressure overload, left ventricular (LV) dilatation is a key step in transition to heart failure (HF). We recently found that collagen VIII (colVIII), a non-fibrillar collagen and extracellular matrix constituent, was reduced in hearts of mice with HF and correlated to degree of dilatation. A reduction in colVIII might be involved in LV dilatation, and we here examined the role of reduced colVIII in pressure overload-induced remodelling using colVIII knock-out (col8KO) mice. METHODS AND RESULTS: Col8KO mice exhibited increased mortality 3-9 days after aortic banding (AB) and increased LV dilatation from day one after AB, compared with wild type (WT). LV dilatation remained increased over 56 days. Forty-eight hours after AB, LV expression of main structural collagens (I and III) was three-fold increased in WT mice, but these collagens were unaltered in the LV of col8KO mice together with reduced expression of the pro-fibrotic cytokine TGF-ß, SMAD2 signalling, and the myofibroblast markers Pxn, α-SMA, and SM22. Six weeks after AB, LV collagen mRNA expression and protein were increased in col8KO mice, although less pronounced than in WT. In vitro, neonatal cardiac fibroblasts from col8KO mice showed lower expression of TGF-ß, Pxn, α-SMA, and SM22 and reduced migratory ability possibly due to increased RhoA activity and reduced MMP2 expression. Stimulation with recombinant colVIIIα1 increased TGF-ß expression and fibroblast migration. CONCLUSION: Lack of colVIII reduces myofibroblast differentiation and fibrosis and promotes early mortality and LV dilatation in response to pressure overload in mice.


Assuntos
Colágeno Tipo VIII/deficiência , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/mortalidade , Hipertrofia Ventricular Esquerda/fisiopatologia , Miocárdio/patologia , Animais , Pressão Arterial/fisiologia , Diferenciação Celular/fisiologia , Colágeno Tipo VIII/metabolismo , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose/prevenção & controle , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Transdução de Sinais/fisiologia , Taxa de Sobrevida , Fator de Crescimento Transformador beta/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP
10.
FEBS J ; 280(10): 2382-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23480731

RESUMO

During progression to heart failure (HF), myocardial extracellular matrix (ECM) alterations and tissue inflammation are central. Lumican is an ECM-localized proteoglycan associated with inflammatory conditions and known to bind collagens. We hypothesized that lumican plays a role in the dynamic alterations in cardiac ECM during development of HF. Thus, we examined left ventricular cardiac lumican in a mouse model of pressure overload and in HF patients, and investigated expression, regulation and effects of increased lumican in cardiac fibroblasts. After 4 weeks of aortic banding, mice were divided into groups of hypertrophy (AB) and HF (ABHF) based on lung weight and left atrial diameter. Sham-operated mice were used as controls. Accordingly, cardiac lumican mRNA and protein levels were increased in mice with ABHF. Similarly, cardiac biopsies from patients with end-stage HF revealed increased lumican mRNA and protein levels compared with control hearts. In vitro, mechanical stretch and the proinflammatory cytokine interleukin-1ß increased lumican mRNA as well as secreted lumican protein from cardiac fibroblasts. Stimulation with recombinant glycosylated lumican increased collagen type I alpha 2, lysyl oxidase and transforming growth factor-ß1 mRNA, which was attenuated by costimulation with an inhibitor of the proinflammatory transcription factor NFκB. Furthermore, lumican increased the levels of the dimeric form of collagen type I, decreased the activity of the collagen-degrading enzyme matrix metalloproteinase-9 and increased the phosphorylation of fibrosis-inducing SMAD3. In conclusion, cardiac lumican is increased in experimental and clinical HF. Inflammation and mechanical stimuli induce lumican production by cardiac fibroblasts and increased lumican altered molecules important for cardiac remodeling and fibrosis in cardiac fibroblasts, indicating a role in HF development.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Fibroblastos/patologia , Insuficiência Cardíaca/patologia , Interleucina-1beta/farmacologia , Sulfato de Ceratano/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Colágeno Tipo I/metabolismo , Ecocardiografia , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Sulfato de Ceratano/genética , Sulfato de Ceratano/farmacologia , Lumicana , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Tamanho do Órgão , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Estresse Mecânico , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
11.
FEBS J ; 280(10): 2228-47, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23374111

RESUMO

Sustained pressure overload induces heart failure, the main cause of mortality in the Western world. Increased understanding of the underlying molecular mechanisms is essential to improve heart failure treatment. Despite important functions in other tissues, cardiac proteoglycans have received little attention. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is essential for pathological remodeling, and we here investigated its expression and shedding during heart failure. Pressure overload induced by aortic banding for 24 h and 1 week in mice increased syndecan-4 mRNA, which correlated with mRNA of inflammatory cytokines. In cardiac myocytes and fibroblasts, tumor necrosis factor-α, interleukin-1ß and lipopolysaccharide through the toll-like receptor-4, induced syndecan-4 mRNA. Bioinformatical and mutational analyses in HEK293 cells identified a functional site for the proinflammatory nuclear factor-κB transcription factor in the syndecan-4 promoter, and nuclear factor-κB regulated syndecan-4 mRNA in cardiac cells. Interestingly, tumor necrosis factor-α, interleukin-1ß and lipopolysaccharide induced nuclear factor-κB-dependent shedding of the syndecan-4 ectodomain from cardiac cells. Overexpression of syndecan-4 with mutated enzyme-interacting domains suggested enzyme-dependent heparan sulfate chains to regulate shedding. In cardiac fibroblasts, lipopolysaccharide reduced focal adhesion assembly, shown by immunohistochemistry, suggesting that inflammation-induced shedding affects function. After aortic banding, a time-dependent cardiac recruitment of T lymphocytes was observed by measuring CD3, CD4 and CD8 mRNA, which was reduced in syndecan-4 knockout hearts. Finally, syndecan-4 mRNA and shedding were upregulated in failing human hearts. Conclusively, our data suggest that syndecan-4 plays an important role in the immune response of the heart to increased pressure, influencing cardiac remodeling and failure progression.


Assuntos
Fibroblastos/metabolismo , Imunidade Inata , Inflamação/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Sindecana-4/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Benzamidas/farmacologia , Adesão Celular , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Adesões Focais/efeitos dos fármacos , Células HEK293 , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sindecana-4/genética , Sindecana-4/imunologia , Linfócitos T/metabolismo , Tiazóis/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...